
Source code analysis for

White paper

highly safety critical
applications

Table of Contents

Source Code Measurement Techniques| 1
About this paper | 1

Reason for Source Code Analysis | 2
Code Static Analysis | 2

 Code Reviews | 2
Control Flow Analysis | 4

Static Data Flow | 7

Code Dynamic Analysis | 10
Statement Coverage | 11

Decision Condition Coverage | 12
MC/DC Coverage | 14

Path Analysis | 16
Introduction | 16

Dynamic Data Flow | 19
Coding Measurements for Safety Critical Applications | 19

Quality
Definition

Test Plan

Test Case
Development

Test Design

Test Case ExecutionUser Acceptance Tests

 ©- Powersoft19 SQA. All Rights Reserved.

Dynamic
Data Flow
Analysis

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 1

Source Code Measurement Techniques

About this paper
This document has been written to provide the answer to two questions:

How can we increase reliability in our system by source code measurement techniques?

What are the combinations of coding measurements to achieve safety certification of highly critical
applications?

MC/DC
Coverage

Decision
Condition
Coverage

Sta�c Analysis

Dynamic Analysis

Statement
Coverage

Path
Analysis

Cri�cal Analysis

Control Flow
Analysis

Code
Review

Static Data
Flow

 ©- Powersoft19 SQA. All Rights Reserved.

While working in the safety critical industry we experience several software bugs which can be the cause
of human deaths, environmental loss or financial loss for an organization. I will highlight one such problem
below, which caused life threat and financial loss situation for a well-known organization. But the main goal
of this paper is to analyze how we can eliminate such hazardous situations from our software.

The following article is referenced from the EDN magazine and is available at http://www.edn.com/design/au-
tomotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended acceleration
that led to the death of one of the occupants. Central to the trial was the Engine Control Module's (ECM)
firmware.

Embedded software used to be low-level code we'd bang together using C or assembler. These days, even a
relatively straightforward, albeit critical, task like throttle control is likely to use a sophisticated RTOS and
tens of thousands of lines of code.

For this research, EDN consulted Michael Barr, CTO and co-founder of Barr Group, an embedded systems
consulting firm. As a primary expert witness for the plaintiffs, the in-depth analysis conducted by Barr and
his colleagues illuminates a shameful example of software design and development, and provides a caution-
ary tale to all involved in safety-critical development, whether that is for automotive, medical, aerospace, or
anywhere else where failure is not tolerable.
Barr's ultimate conclusions were that:

www.powersoft19.com/sqa | 2

It is source code analysis without executing the program. Following measurement techniques are discussed
within this paper.
1. Code Review
2. Control Flow Analysis
3. Static Data Flow Analysis

Mostly code reviews are used to achieve the following goals.

Reason for Source Code Analysis

Code Reviews

Purpose of Code Reviews

Code static Analysis

Toyota’s electronic throttle control system (ETCS) source code is of unreasonable quality.

Toyota’s source code is defective and contains bugs, including bugs that can cause unintended accel-
eration (UA).

Code-quality metrics predict presence of additional bugs.

Toyota’s fail safes are defective and inadequate (referring to them as a “house of cards” safety archi-
tecture).

Misbehaviors of Toyota’s ETCS are a cause of UA

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 3

These are the basic intentions of all code reviews and can be further extended such as:

There are many approaches for code reviews and a few of them are highlighted in this paper.
1. Peer Reviews
2. Code Analysis from Tools

Peer review is the evaluation of work by one or more people of similar competence to the producers of the work.
It constitutes a form of self-regulation by qualified members of a profession within the relevant field.

Second version of this approach is code walkthrough from other team members. In this approach a second
person should perform a line-by-line review and identify some inconsistencies, harmful areas and clarity of
the source code. This approach has a number of complications such as:

Practically this process involves the developer of the code with one or more reviewers; he presents his approach
to other colleagues. Reviewers analyze the authors approach and add some comments regarding logics and
identify some erroneous situations. One common document is prepared to add findings of the complete team in
one source code file. These points are taken as action items for the next code review meet

If the above process is being executed on a third party source code then improvement or modification in the code
is responsibility of the relevant party.

Common Approaches to Code Reviews

Peer Reviews

In some organizations regular code reviews are part of the process, senior or lead developers use their
experiences to identify gaps and risks in the source code. Sometime they use software tools for peer
reviews but this approach has a few side effects e.g. sometimes mistakes get overlooked, clash of
egos and mainly it is time consuming.

Code review with the team members is like a technical discussion and brainstorming sessions. The new
ideas enable the team to take steps forward in terms of the techniques used.

Sometimes code reviews are used to achieve some customer related standards or certifications. If
someone is using third party code then it is necessary to make review process for acquired code.

Time overwhelming
Egos
Need proper planning to execute this process

To achieve level of reliability by reducing errors in the software. It could save testing time during the
development process.

Code reviews save maintenance cost in future. Different types of coding standards are followed to
which part of code is undetermined.

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 4

Control Flow Analysis is the second level of code review by using software tools. This approach is usually
used to verify structure of and improve the quality of the source code. The following measurements are taken
during this analysis.

Control Flow Analysis

Purpose of Control Flow Analysis

Software tools perform syntax, layout and structural analysis on the source code and report deviation from a
predetermined set of coding standards.

Tools report lots of deviations in legacy code

Different tools are used for each language

Different programming standards are required for each language

• Line of Code
• Comment Density
• Depth of Loop Nes�ng

Clarity

Maintainability

Testability

• Cycloma�c Complexity
• Essen�al Cyclome�c Complexity
• Inaccessible/Unreachable Code

• Cycloma�c Complexity
• Number of Func�ons
• Uncondi�onal Jumps

Code Layout

Comments Density

Naming Conven�on

Industrial Safety Standards Conformance

Iden�fica�on of Dead Code

Iden�fica�on of Memory Leakage

Code Analysis from Tools
It is the second approach in which some tools are involved for code reviews. Most of the organizations use this
approach to save time and avoid failures by using some pre-defined industrial standards.

The main problems of this method are threefold:

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 5

The Lines of code of the project baseline should be measureable and within some defined limit. Limits of
these quality checks vary with organizational standards. This attribute take a part in software clarity check.

Lines of Code

Comment Density
Complete source code of the application should be properly commented. It is necessary that third person or
external assessor can understand the flow of the application by using comments. Software tools should be
used to measure the density of code comments. Density of code comments vary with organizational stan-
dards. This attribute also take a part in software clarity check.

Loop Nesting
Complete source code of the application should be properly commented. It is necessary that third person or
external assessor can understand the flow of the application by using comments. Software tools should be
used to measure the density of code comments. Density of code comments vary with organizational stan-
dards. This attribute also take a part in software clarity check.

Cyclomatic Complexity
Cyclomatic complexity of each individual function should be checked during the control flow analysis.
Usually McCabe algorithm is used for the measurement of Cyclomatic Complexity of a function. A High
number for the Cyclomatic Complexity value means code is difficult to test and maintain. On the other hand
system performance is degraded with higher complexity.

It is a software matrix which is used to measure the Complexity of the software program. Cyclomatic Com-
plexity matrix is mainly based on the number of decision/linearly independent path in a program’s source
code.

V (G)= No. of edges - No. of nodes + 2

Essential Cyclomatic Complexity
Essential Cyclomatic Complexity of each individual function should also be checked during the control flow
analysis. It is a rare algorithm and is not followed in common software analyzer tools. This algorithm checks
whether the target function is properly structured or not. Normally this algorithm is used in Structure
Programming Verification (SPV). Limit of this algorithm is also selectable and depends on organizational
standards.

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 6

Unreachable code is a program code fragment which is never executed. It only adds to the size of the program
but neither causes any performance losses nor contributes in any computations. However, its presence may
indicate some logical errors. Unreachable fragment of code could be removed without any modification in
program.
Below are a few simple examples of unreachable code.

Inaccessible/Unreachable Code

1. intfunc (int x)
2. {
3. int y = x*2;
4. return y;
5. // Inaccessible code
6. if (y < 10)
7. {
8. y += 10;
9. }
10. return y;
11. }

Example:

It is recommended that number of functions per module should be defined in organizational standards. There
shall be some limit on number of functions when modularity approach is followed in the project. This measure
can balance the module density but it depends on the criticality of the application. It is not a compulsory
check for safety critical applications but it can reduce testing time in the dynamic analysis.

Number of Functions

Unconditional JUMPS are strictly prohibited in safety critical applications. Unconditional JUMPS always
create uncertainty in the module structure. If we consider following example

Unconditional Jumps

Unstructured Code

1. x = 0
2. x= x + 1
3. PRINT x; " squared = "; x * x
4. IF x >= 10 THEN GOTO 6
5. GOTO 2
6. PRINT "Program Completed."

Structured Code

1. FOR x= 1 TO 10
2. PRINT x; " squared = "; x * x
3. NEXT x
4. PRINT "Program Completed."
5. END

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 7

A checklist could be created to ensure that complete code is properly structured. For example if we take
three attributes from above sections and compare each function to decide whether the functions are properly
structured or not.

Structure Programming Verification

A checklist could be created to ensure that complete code is properly structured. For example if we take
three attributes from above sections and compare each function to decide whether the functions are properly
structured or not.

Checklist

Static Data Flow analysis plays an important role in performance improvement of source code modules. It is a
technique for gathering information about the possible set of values that data can take during the execution
of the system.

Static Data Flow

If we consider that a program is designed to create, set, read, evaluate and destroy data, then we must
consider the errors that could occur during those processes.

Some examples of Data Flow errors are mentioned below:

Purpose of Static Data Flow Analysis

Assigning an incorrect or invalid value to a variable. These kinds of errors include data-type conversion
issues where the compiler allows a conversion but there are side effects that are undesirable.

Incorrect input results in the assignment of invalid values.

Failure to define a variable before using its value elsewhere.

Incorrect path taken due to the incorrect or unexpected value used in a control predicate.

Trying to use a variable after it is destroyed or out of scope.

Redefining a variable before it is used.

Set-Use pairs are a notation of Data Flow. In Set-Use pair, we split the lifecycle of a data variable into three
patterns.

Function Name

Func_1

Func_2

Func_3

Func_4

Func_5

Cyclomatic
Complexity

PASS

PASS

PASS

FAIL

PASS

Essential
Complexity

PASS

PASS

FAIL

PASS

PASS

Unconditional
Jumps

NO

NO

NO

NO

YES

Structure
Programming
Verification
YES

YES

NO

NO

NO

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 8

“~” notation is used to identify variable is define first or last e.g. ~x mean variable is define first before use
and x~ mean variable is define after use.

No.

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Notation

~d
du
dk
~u

ud
uk
~k
ku
kd

dd
uu
kk
d~
u~
k~

Anomaly

first define
define-use
define-kill
first use

use-define
use-kill
first kill
kill-use
kill-define

define-define
use-use
kill-kill
define last
use last
kill last

Explanation

Allowed.
Allowed, normal case.
Bug; data were never used.
Potential bug; data were used without definition. It may be a global variable, defined
outside the routine.
Allowed; data used and then redefined.
Allowed,
Potential bug; data are killed before definition.
Serious defect; data are used after being killed.
Usually allowed. Data are killed and then redefined. Some theorists believe this should
be disallowed.
Potential bug; double definition.
Allowed; normal case. Some do not bother testing this pair since no redefinition occurred.
Likely bug.
Potential bug; dead variable? May be a global variable used in another context.
Allowed. Variable was used in this routine but not killed off.
Allowed; normal case.

[d:] Defined

[u:] Used

[k:] Killed

When the variable is defined, ini�alized or created

When the variable is used in computa�on

When the variable is killed or destroyed

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 9

Data Flow Anomaly Example
1. public static double paymentcal (int point)
2. {
3. doublepayment = 0;
4. if (point > 0)
5. {
6. payment= 40;
7. if (point>100)
8. {
9. if(point <=200)
10. {
11. payment = payment + (point - 100) * 0.5;
12. }
13. else
14. {
15. payment = payment+ 50 +(point-200) *0.1;
16. if(payment >=100)
17. {
18. payment = payment * 0.9;
19. }
20. }
21. }
22. }
23. returnpayment;
24. }

Assuming some points were used, however, the payment is set to $40 in line 6.In line 7 we see if more than
100 points were used; in line 9 we check if more than 100 but less than 200 points were used. We simply
calculate the extra points over 100 and add $0.50 cents for each one. If over 200 points, we take the base
payment, add $50.00 for the first extra 100 points, and then bill $0.10 per point for all extra points. Finally,
we calculate the discount if the payment is over or equal to $100.00.

Case

1.
2.
3.
4.
5.
6.
7.

Anomaly

~d (3)
dd (3-6)
du
(3-23)(6-11)(6-15)(15-18)
ud (11-11)(15-15)(18-18)
uu (16-18)(16-23)
uk (23-24)
k~ (24)

Type

First Define
Define and Define
Define and Use
Use and Define
Use and Use
Use and Kill
Kill Last

 Explanation

 normal case
 suspicious
 normal case
 acceptable
 normal case
 normal case
 normal case

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 10

Data flow analysis is a strong technique to make the code reliable by scanning it in a systematic way such
that the information about the variables, which are being used in the program, is collected and then conclu-
sions can be made about the side effects of each variable.

Why Static Data Flow Analysis?

Data Flow Analysis criteria is used to analyze expected and unexpected paths of the software. It is helpful to
measure the impact of one non-critical software module on critical software modules.

Recommendations

Dynamic analysis presents a clear view of the code at the time of execution. In this analysis teams become
aware of all logical bugs, un-reachable state of code, boundary conditions of loops, and run time behavior of
variables.

Code Dynamic Analysis

Dynamic Data
FlowPath Analysis

MC/DC Coverage

Decision Condi�on
Coverage

Statement
Coverage

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 11

This paper will discuss some of the famous dynamic measurement techniques which are used in safety and
security critical applications validation.

Statement Coverage

Decision Condition Coverage

MC/DC Coverage

Path Analysis

Dynamic Data Flow

The statement coverage concept is that, every line of code should be exercised at least once during the
process of testing. This coverage technique is also called line coverage or basic path coverage. This technique
is usually executed by using control flow graphs. Every path which does not have any condition is called
basic path and if we are traversing these paths then we are executing statement coverage. Software tools
record these paths and prepare a report to show what percent of coverage is achieved.

Statement Coverage

During the basic path execution project relevant team can see the reaction of the system when some harmful
statement occurs.

Following is an example of statement coverage.

Statement Coverage Example

System is started with the default value of a variable W = 0.

System will follow the basic path after startup 1->2->3->5.

This path will cover during the statement coverage.

Second path is 1->2->4->5 and this path is only possible when a value of a variable w>=5.

Second path will be part of Branch/Decision coverage and it is describe in the following sections

1

2

3

5

 2

4

W>=5

W>5

System Default Parameters
W = 0

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 12

Statement coverage is the easiest coverage matrix in the dynamic code analysis. It helps the teams to find
out bugs that may be inherent in the area which are rarely used. Positive aspect of this coverage is, it is not
resource consuming, additionally it builds confidence on the source code. This technique explores the paths
as much as possible within its boundaries because the source code consists of a lot of conditions, loops and
jumps.

Why Statement Coverage?

Many standards and tools recommend that project teams should analyze their code at least to this level. It
could eliminate infeasible area of code from your application and also give benefits during the code optimiza-
tion.

Recommendations

Decision Condition coverage is extensively used throughout the software industry. It is a compulsory level for
highly critical applications and gives a satisfactory confidence on the code reliability to the code assessor.

Decision Condition Coverage

In this technique the decision is made to execute both the true and false path once each.

Consider example: if (A AND B) condition occurs in the source code
To cover this decision though decision coverage software tool presents the following test cases

Decision Coverage:

This technique focuses more on the atomic conditions available in the decision rather than the decision
outcome itself. We need to make all atomic conditions once true and once false irrespective of the decision
outcome.

Consider an example: if (A AND B) condition occurs in the source code
To cover this decision though condition coverage software tool presents the following test cases

Condition Coverage:

A

True

True

B

True

False

A AND B (Outcome)

True

False

Possible Decisions

Decision-1

Decision-2

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 13

This technique is SUM-UP form of Decision and Condition coverage as described above hence the name
“Decision Condition” Coverage. Here we need to fulfill both Decision and Condition coverage.

Decision Condition Coverage

Source Code: if (A AND B)

To cover this decision through decision condition coverage software tool presents the following test cases

Decision Condition Example

Note that we were able to achieve Decision Condition coverage without adding any additional test cases.
Normally we can achieve Decision Condition coverage without adding extra test cases; we just need to
carefully design the test inputs to fulfill the two simultaneously.

Using statement coverage, we were able to execute all lines but not all branches
of code. The disadvantage of covering only statement coverage is that we might
miss a critical bug which is hidden in some other branches.
Consider the example below:

1. x = 0;
2. if (a > b) then
3. x = 3;
4. else
5. Rep = 63/x;

Test 1: Black arrows
a = 3, b = 2, Rep = 6

Why Decision Condition Coverage?

A

True

False

B

True

False

Fulfill Atomic Condition

A AND B (Outcome)

True

False

Fulfill Decision Condition

A

False(Case-1)

True(Case-2)

B

True(Case-1)

False(Case-2)

A AND B (Outcome)

False

False

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 14

Test 2: Grey arrows
a =2, b = 3, Rep =? (CRASH)

In the above example, Test 1 gives 100% statement coverage. However, if we execute Test 2 (to cover Deci-
sion Condition Coverage) we will find that execution of line 5 will cause the software to crash as x is 0 and
division by 0 is not defined. A bug unearthed by Decision coverage which would have been overlooked if
doing only statement coverage.

MC/DC (Modified Condition/Decision Condition) measurement is considered as a highest and powerful
technique in the software industry. To ensure the software reliability for airborne systems Radio Technical
Commission for Aeronautics (RTCA) created a guideline and made this technique a compulsory part of safety
certification.

This level of coverage is considered stronger because we add another factor to what we were already testing
in Decision Condition coverage. Our bug hypothesis states that we might find a bug hiding in that last little
space that we have not tested. “MC/DC requires that each atomic condition be tested both ways and that
decision coverage must be satisfied. It then adds one more factor as shown in the chart”.

Let’s put the theory into a project example:
In this example I will perform both Decision Condition and MC/DC analysis

MC/DC Coverage

Problem Statement: Consider an automatic traffic violations capture system which activates a camera snap-
shot whenever a car`s wheels are on/over the line marking the start of intersection, the traffic light is RED
and the car is speeding. To drill down the logic implemented, we have the following pseudo code:
Source Code Condition

At least one test where the decision outcome would change if the
atomic condi�on X were TRUE

At least one test where the decision outcome would change if the
atomic condi�on X were FALSE

Each different atomic condi�on has tests that meet requirements
1 and 2

It is strongly recommended for software engineers to maximize coverage to at least this level. Any unneces-
sary infeasible branches should be removed which will result in improved efficiency and compactness of the
code.

Recommendations

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 15

To achieve maximum coverage we need to execute each combination which is eight test cases for three
inputs (2n). We can achieve similar outcomes from MC/DC coverage but with lesser number of test cases. If
there are N atomic conditions, MC/DC can normally be achieved in N+ 1 test cases.

For highest level of coverage required under FAA DO/178C Level A, MC/DC coverage is performed. RCTA and
CENELEC standards state that for software that can cause catastrophic impacts on human life should be
verified through MC/DC coverage. In other words all the planes that come out of Boeing production have their
software verified through MC/DC coverage technique.

Interesting facts

Test Cases

Decision Condition Coverage
Test-1

Test-2

MC/DC Coverage
Test-1

Test-2

Test-3

Test-4

LIGHT = RED

TRUE

FALSE

TRUE

FALSE

TRUE

TRUE

WHEELS =
ON-LINE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

CAR = SPEED

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

OUTCOME

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE

• LIGHT = RED
• WHEELS = ON-LINE
• CAR = SPEED

• LIGHT = NOT RED
• WHEELS = OF-LINE
• CAR = STILL

Test-1

Test-2

• LIGHT = RED
• WHEELS = ON-LINE
• CAR = SPEED

• LIGHT = NOT RED
• WHEELS = ON-LINE
• CAR = SPEED

Test-1

Test-2

• LIGHT = RED
• WHEELS = OF-LINE
• CAR = SPEED

• LIGHT = RED
• WHEELS = ON-LINE
• CAR = STILL

Test-4

Test-3

IF (light=RED &&wheels =On-line &&car =SPEED)

MC/DC CoverageDecision Condi�on Coverage

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 16

Path Analysis

Introduction
The main goal behind path analysis is that outcomes of every
Cyclomatic path should be exercised at least once. Decisions of
Cyclomatic path should record in a report and analyze that
which paths could be harmful for the application. In above
stated dynamic coverage methods like statement and decision
condition there will still be some possibilities of hidden
defects, we can increase degree of coverage by execution of
Cyclomatic paths. Although we have achieved a high level of
coverage from statement and decision condition but some
experts refer that additional paths should also be traversed at
least once in the project life cycle even when nature of appli-
cation is highly security/safety critical.

McCabe software is quite famous in path analysis techniques.
Following are some examples of path analysis.
1. void copyStr (char** dest, char** src, int start, int end){
2. intToCopy = 1;
3. intlastpos = strlen(*src)-1;
4. if (end >lastpos){
5. end = lastpos;
6. }
7. If (start < 0) {
8. start = 0;
9. }
10. if(end > start){
11. ToCopy += (end-start);
12. }
13. Strncpy (*dest, (*src)+start, ToCopy);
14. }

Above function contains four Cyclomatic paths. Two paths will
be exercised during decision condition coverage but additional
two paths need to be exercised for complete path analysis.

 1

2

6

FALSE

FALSE

8

TRUE

5

TRUE

FALSE

2

4

3

7

TRUE

6

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 17

Coverage

Statement +
Decision
Condition

Test Cases

char* original = “Hello”;
char* copy = (char*)malloc (80);
Test-1:
copyStr (©, &original, -500,
500);

Blue area has been executed with
this test data

Flow Graph

Test Case-1

Statement + Decision Condition
char* original = “Hello”;
char* copy = (char*)malloc (80);
Test-1:
copyStr (©, &original, -500,
500);

Blue area has been executed with
this test data
 Test-2:
copyStr (©, &original, 0, 0);

Blue area has been executed with
this test data

Test Case-2

Statement + Decision Condition is
executed 100 %

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 18

Path analysis is a different measurement technique with respect to code coverage methods. In code coverage
like statement and decision condition are more focused on code structuring and their decisions, where path
analysis measurement developed by McCabe software highlights the Cyclomatic paths which are directly
proportional to the complexity level of the functions. McCabe group insists code analysts to exercise Cyclo-
matic paths at least once in the project life cycle so that target application will be free from security vulnera-
bilities.

Why Path Analysis?

Path Coverage Additional two test cases are
required to complete path analy-
sis

Test-3:
copyStr (©, &original, -10, 0);

Test Case-3

Test-4:
copyStr (©, &original, 1000,
100);

Note: This test path exercise the
out-of-bounds access of a string. If
you will analysis the test data then
you will get conclusion that string
buffer is smaller than base string size.
It is a common mistake and mostly
overlooked in the code review and
decision condition analysis. It is a
string manipulation defect and strictly
prohibited in the security critical
certification standards.

Test Case-4

 1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

1

2

6

FALSE

FALSE

8

5

FALSE

2

4

3

7

6

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 19

Path analysis technique is more recommended for security critical applications. This technique also covers
decision coverage at higher level so it can also be used instead of decision condition coverage in different
types of projects. Before using this technique in safety critical applications it is necessary to contact with
your respective standards and certification bodies.

Recommendations

Dynamic Data Flow

Introduction
It is a powerful measurement technique which traces the test paths which are initiated by control flow test
data. Code coverage techniques focus on execution of control flow where data flow report focus on run time
utilization of variables during the control flow.
In above static data flow technique, tools analyze the code and estimate the paths in which code will execute
and in dynamic data flow technique tools trace these paths by using local and global variable utilization. The
most beneficial part of this technique is that it shows the impact of software functions and variables to other
functions and variables while data is executing. Safety agencies like RCTA are quite concerned about the
data usage and impact of data on other safety or non-safety modules in the application.

Dynamic data flow analysis identifies and narrows down the scope of software functions. It gives clear idea
to code analysts about the interface between software modules and side effects of each impact.

Why Dynamic Data Flow?

This technique is recommended for airborne systems and also those systems which require certification from
RCTA. Positive side of this technique is that tester does not write any new test data for the measurement so
test case writing time eliminates in this technique. It is a supportive technique in highly critical applications.

Recommendations

This section will cover the coding measurement techniques mapping with the safety critical applications. All
information in this section is inherited from safety standards either IEC 61508 branch standards or DO-178C
standard.

Coding Measurements for safety Critical Application

 ©- Powersoft19 SQA. All Rights Reserved.
www.powersoft19.com/sqa | 20

CENELEC IEC 61508 safety standards uses following approach.

RCTA DO178B standards uses following approach.

Delivered Quality Control Systems Team of Functional Safety Experts Delivered Highly Critical
Applications

- Code Review - Code Review
- Control Flow
 Analysis

- Code Reivew
- Control Flow
 Analysis
- StatementCoverage
- Decision Condi�on
 Coverage

- Code Reivew
- Control Flow
 Analysis
- Statement Coverage
- Decision Condi�on
 Coverage
- Dynamic Data Flow
 (Suppor�ve
 Measurement)

SIL 1 SIL 2 SIL 3 SIL 4

- Statement Coverage
- Sta�c Data Flow Analysis
- Dynamic Data Flow
 Analysis
- Decision Condi�on
 Coverage
- MC/DC Coverage

- Statement Coverage
- Sta�c Data Flow
 Analysis
- Dynamic Data Flow
 Analysis
- Decision Condi�on
 Coverage

- Statement Coverage
- Sta�c Data Flow
 Analysis
- Dynamic Data Flow
 Analysis

- Formal Code Review

System Level A
System Level B

System Level C
System Level D

Contact Us
Explore ways to use our expertise in growing your business while establishing a valuable partnership
with us.

Contact our consultants at:

E-mail: sqa@powersoft19.com
Website: www.powersoft19.com/sqa

